A Nonlocal Mean Curvature Flow and Its Semi-implicit Time-Discrete Approximation
نویسندگان
چکیده
We address in this paper the study of a geometric evolution, corresponding to a curvature which is non-local and singular at the origin. The curvature represents the first variation of the energy Mρ(E) defined in (1.1), proposed in a recent work [5] as a variant of the standard perimeter penalization for the denoising of nonsmooth curves. To deal with such degeneracies, we first give an abstract existence and uniqueness result for viscosity solutions of non-local degenerate Hamiltonians, satisfying suitable continuity assumption with respect to Kuratowsky convergence of the level sets. This abstract setting applies to an approximated flow. Then, by the method of minimizing movements, we also build an “exact” curvature flow. We illustrate this with some examples, comparing the results with the standard mean curvature flow.
منابع مشابه
A Phase Field based PDE Constraint Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Nested Minimization Approach of Willmore Type Functionals Based on Phase Fields
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Phase Field Based Pde Constrained Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Higher Order Scheme for a Tangentially Stabilized Plane Curve Shortening Flow with a Driving Force
We introduce a new higher order scheme for computing a tangentially stabilized curve shortening flow with a driving force represented by an intrinsic partial differential equation for an evolving curve position vector. Our new scheme is a combination of the explicit forward Euler and the fully-implicit backward Euler schemes. At any discrete time step, the solution is found efficiently using a ...
متن کاملApproximation of Nonlinear Parabolic Equations Using a Family of Conformal and Non-conformal Schemes
We consider a family of space discretisations for the approximation of nonlinear parabolic equations, such as the regularised mean curvature flow level set equation, using semi-implicit or fully implicit time schemes. The approximate solution provided by such a scheme is shown to converge thanks to compactness and monotony arguments. Numerical examples show the accuracy of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2012